

Engineering *Pseudomonas putida* for production of muconic acid

Christopher W. Johnson christopher.johnson@nrel.gov

Agile BioFoundry Industry Day October 4, 2019

Host: Pseudomonas putida KT2440

Saprophytic soil bacterium

Gram-negative aerobe

- GRAS
- Fast growing
- Stress tolerant
- Metabolically versatile
- Genetically tractable

Poblete-Castro I, Borrero-de Acuña JM, Nikel PI, Kohlstedt M, Wittmann C. Host Organism: Pseudomonas putida. In: Wittmann C, Liao JC, editors. Industrial Biotechnology: Microorganisms. 2017. p. 337.

Target: Muconic acid

Direct Replacements

Functional Replacements

Resin

Succinic Acid

HO'R OH

-Diol

Composite

Production of muconic acid from sugar

Johnson, C.W., et al., 2019. Innovative Chemicals and Materials from Bacterial Aromatic Catabolic Pathways. Joule 3, 1523–1537.

- Engineering achieved ~35% yield of muconic acid from glucose
- Elimination of 2-ketogluconate byproduct slowed growth and productivity

Laboratory evolution to improve growth

Bentley G. et al. In preparation

Biosensor development and selection

Adaptive evolution

Improved production

Bentley G. et al. In preparation

Evolution, screening, and rational engineering improved muconate production

Deletion of hexR improves production

Diverse phenotypes to feed machine learning interface

Bentley, et al. In preparation

Diverse phenotypes to feed machine learning interface Fructose Glucose Gluconate

GLC(e)

GLC

G₆P

F6P

NADPH

NADPH

• RU5P

2-KG

2-KG6P

6PGC

. • ATP

ACON

CIT GLX.

Input:

 5 strains with varying muconate and growth phenotypes

6 carbon source combinations to query different metabolic nodes

> **Transcriptomics Metabolomics**

periplasm

intracellular

NADPH

SUCC

Going beyond rational engineering with machine learning

Predict TF expression pattern as functions of (observed) metabolome and (modeled) TF KO

Use predicted TF expression pattern as input to ANN

Predict fermentation phenotype, relative to strain without TF knockout

Evaluating non-intuitive Learn targets

- Machine learning targets were provided on August 1, 2019
- Constructs to either delete or overexpress genes were constructed
- Resulting strains were generated, all with chromosomal modifications
- By September 30, 2019, 111 strains had been generated AND characterized for performance, in biological triplicate

Improved productivity

Improved growth

Enabling Hydrolysate Utilization in P. putida

Corn Stover DMR-EH

(deacetylation and mechanical refining, enzymatic hydrolysis)

Glucose	85 g/L	(472 mM)
---------	--------	----------

Xylose 37 g/L (245 mM)

L-arabinose 5.5 g/L (37 mM)

Galactose 1.2 g/L (7 mM)

OAK

Acknowledgements

Gregg T. Beckham
Davinia Salvachúa
Peter St. John
Gayle Bentley
Isabel Pardo
Graham Dominick
Darren Peterson
Xiunan Yi
Rob Nelson
Mary Kate O'Brien

Taraka Dale
Ramesh Jha
Scott Hennelly
Tari Kern
Daniel Trettel
Naresh Pandey
Chris Yeager
Niju Nayaranan
Shawn Starkenburg
Babs Marrone

Adam Guss
Joshua Elmore
George Peabody
Josh Michener
Dan Close
John Rowan
Annette DeCapite
Sazma Al-Rashid
Gara Wolff

Jon Magnuson
Mark Butcher
Kristin Burnum-Johnson
Young-Mo Kim
Swarnendu Tripathi
Nathalie Munoz-Munoz
Yuqian Gao

Philip Laible
Gyorgy Babnigg
Rose Wilton
Peter Larsen
Debbie Hanson

Sandia National Laboratories

John Gladden
Jamie Meadows

