

Energy Efficiency & Renewable Energy

BIOENERGY TECHNOLOGIES OFFICE

ABF Demonstration Host: Aspergillus

Jon Magnuson

- DBTL: Aspergillus Host Lead
- DBTL: TEST Lead

jon.magnuson@pnnl.gov

October 04, 2019

Aspergillus pseudoterreus Introduction

- Fungi (Saccharomyces, Aspergillus, Pichia, Trichoderma): industrial workhorses used for making \$ from commodity fuels, chemicals, and enzymes in large bioreactors ... e.g., A. niger producing citric acid in ≥100,000L airlift reactors = ~3 million ton market
- A. pseudoterreus & A. niger: genetic tools, genomes sequenced, genome scale metabolic model
- High flux from sugars toward beachhead molecules in glycolysis and the TCA cycle, organic acids, e.g., *A. pseudoterreus* ATCC 32359 makes 50 g/L itaconic acid
- Grows and produces organic acids at pH 1-3, free acids, not salts
 - Separations: high titer, free acid, crystallization possible
 - No lime or sulfuric acid input = no waste gypsum
- Purposes:
 - Develop **advanced DBTL tools** broadly applicable to *Aspergillus* spp.
 - Show the strength of the platform for producing beachhead molecules (pyruvate, oxaloacetate, AcCoA) leading to organic acids

Demonstration Targets: Organic Acids

- Target 1 (began FY17): 3-hydroxypropionic acid
 - Intermediate to acrylic acid and acrylonitrile
 - Heterologous pathway (prokaryotic)
 - Beachheads: pyruvate, oxaloacetate
 - Nat'l. Labs have a portfolio of IP around acrylonitrile that would benefit from renewable 3HP
- Target 2 (began FY18): aconitic acid
 - A 6-carbon tricarboxylic acid, like citric acid.
 - Beverage acidulant, industrial chelator/modifier (cement) etc.
 - Central metabolite with transport limitations
 - Beachheads: pyruvate, oxaloacetate, acetyl-CoA
- Purpose: industrially relevant organic acid demonstration targets to advance DBTL capabilities for Aspergillus and develop bioprocesses

DBTL Cycles

Fools

- Target 1: 3-hydroxypropionic acid

- A. pseudoterreus. Cycle 1-1- through 1-7-
- A. niger "transfer host". Cycle 9-
- Target 2: aconitic acid
 - A. pseudoterreus. Cycle 2-1- through 2-5-
- Tool Development: Cycle 1-8- through 1-11-

Cycle	Cycle Description	Host	Target]
1-1-Y_0	Establish beta-alanine/L-aspartate 3HP pathway	Aspergillus pseudoterreus	3HP	
1-2-Y_0	Establish beta-alanine 3HP pathway	Aspergillus pseudoterreus	3HP	
1-3-Y_0	Establish malonyl-CoA 3HP pathway	Aspergillus pseudoterreus	3HP	
1-4-Y_0	Identify genes involved in 3HP degredation	Aspergillus pseudoterreus	3HP	
1-5-Y_0	Improve productivy via higher expression of beta-alanine 3HP pathway genes	Aspergillus pseudoterreus	3HP	
1-6-Y_0	Improve 3HP precursor flux by overexpression of AAT/PYC	Aspergillus pseudoterreus	ЗНР	
1-7-Y_0	Improve 3HP production using targets from ANN based learn	Aspergillus pseudoterreus	3HP	
1-8-0_M1	Improve aspergillus tools (promoters)	Aspergillus spp.	-	
1-9-0 M1	Improve aspergillus tools (splicing motifs)	Aspergillus pseudoterreus	-	
1-10-0_M1	Improve fungal tools (transferable promoters)	Ascomycota & Basidiomycota	-	
1-11-0_M1	Improve fungal tools (synthetic promoters)	Ascomycota & Basidiomycota	-	
2-1-Y_0	Establish aconitic acid production via cad deletion	Aspergillus pseudoterreus	cis-aconitic acid	
2-2-Y_0	Improve flux toward aconitate (rational targets)	Aspergillus pseudoterreus	cis-aconitic acid	
2-3-Y_0	Improve flux toward aconitate (complex design set)	Aspergillus pseudoterreus	cis-aconitic acid	
2-4-R_0	Identify aconitic acid plasma membrane transporter	Aspergillus pseudoterreus	cis-aconitic acid	
2-5-R 0	Overexpress aconitic acid plasma membrane transporter	Aspergillus pseudoterreus	cis-aconitic acid	
9-1-Y_0	Establish beta-alanine 3HP pathway	Aspergillus niger	3HP	
9-2-Y_0	Improve 3HP precursor flux by overexpression of AAT/PYC	Aspergillus niger	3HP	

Aspergillus pseudoterreus Aconitic acid Target

2-3-Y_0, Rational designs to improve production

Initial production strain: *cad*, i.e., deletion of the *cis*-aconitate decarboxylase gene

2-1-Y_0, Test Learn: multi-omics experiments

Strains: WT (itaconic acid) and cad (aconitic acid)

Test: transcriptomics, proteomics and metabolomics

Time points: 36, 72, and 96 hours

Aconitic acid production in *cad* strain, extracellular

Intracellular metabolomics

- Accumulation of itaconic acid in WT strain
- Accumulation of aconitic acid and citric acid in cad strain
- Same pattern observed extracellularly (previous slide)

∆*cad*

Transcriptomics

- MFS transporters upregulated in *cad* vs. WT at 72 and 96 hours
- 72 = early production phase, 96 = high production phase

Annotation		
Predicted transporter (major facilitator superfamily)	g5.	strain
Monocarboxylate transporter	g10	12 wT cad
Predicted transporter (major facilitator superfamily)	g5	hours 10 36 72 96
Predicted transporter (major facilitator superfamily)	g2	6
Predicted transporter (major facilitator superfamily)	g6	
Monocarboxylate transporter	g4	
Predicted transporter (major facilitator superfamily)	g9	

- G2### deletion did not decrease aconitic acid production
- G1###, g4###, and g9### look promising
- log2 Fold Change > 1 and adjusted p-value < 0.05

G2### and g6### were also detected in proteomics (data not shown)

TCDB

MFS

MFS

MFS

MFS

MFS

MFS

MFS

BIOENERGY TECHNOLOGIES OFFICE

Genes upregulated in cad, proteomics

strain

72h

96h 120h

- Inhibitor expressi
 Aconitate
- Inhibitor catabolic gene: overexpression candidate
 - Aconitate metabolizing gene: deletion target

2-4-R_0, <u>DBTL</u>: Test and Learn Capabilities to ID Transporter Candidates Design & Build to Confirm

BIOENERGY TECHNOLOGIES OFFICE

2-5-R_0, <u>Design/Build:</u> transporter overexpression

2-1-Y_0, Test: Aspergillus in small bioreactors

- Scaling down has the advantage that many bioreactors can be run & conditions examined in parallel
- However, Filamentous fungi often exhibit poor morphology in small scale bioreactors (0.5L)

10L: good morphology

Sixfors, 500mL glass: poor morphology

Test *A. pseudoterreus* in the ambr250 with ABPDU Looking for morphology seen in larger bioreactors

Process Integration and Scale-Up: Round Robin tests across the lab partner facilities to identify better reactor configurations, examine reproducibility

BIOENERGY TECHNOLOGIES OFFICE

Future Plans

- Deletion analysis and over-expression of aconitic transporter candidate genes *and test effect on* aconitic acid production
- Deletion or over-expression of candidate metabolic genes from modeling of multiomics data
- Test A. pseudoterreus in the ambr250 with ABPDU
- FY20: Develop *in vitro* CRISPR technique that can delete multiple genes at same time and can be applied to different *Aspergillus* spp.

Aspergillus spp. 3HP Target

Aspergillus sp. for 3HP production

- β-hydroxy carboxylic acid (pKa 4.5)
- Biorenewable acrylate and acrylonitrile
- biodegradable polymers, poly(3HP)
- Heterologous pathways (prokaryotic)
- Beachheads: pyruvate, oxaloacetate
- National labs have a portfolio of IP around acrylonitrile that would benefit from renewable 3HP

3HP metabolic engineering

BIOENERGY TECHNOLOGIES OFFICE

3HP DBTL cycles in progress

Increased Copy Number Correlates with Increased 3HP Titer

1-2-Y_0, Learn: multi-omics analysis

19 | © 2016-2019 Agile BioFoundry

1-4-Y_0, Design, Build: Using DIVA at PNNL

Projects: PNNL Build Team × +				
Status changed	New status	Updated by	Comment	
7 days ago	Clonal isolation	Kyle Pomraning		
07/15/19	Assembling parts	Kyle Pomraning		
06/27/19	PCRing parts	Kyle Pomraning		
06/21/19	Waiting for reagents	Kyle Pomraning	ordered primers	
06/21/19	In progress	Kyle Pomraning	Construction started.	
06/21/19	Construction requested	Kyle Pomraning	Use charge code: N83885.	
06/21/19	PI approval requested	Kyle Pomraning	Trying out DIVA for PNNL build	

J5 File - Load - Edit - Help -				
•	€ □	€ □	€ □	
plasmid backbone	5' flank	resistance marker	3' flank	
pRF_HU2_BB	ABF_006652	ABF_006648	ABF_006663	
pRF_HU2_BB	ABF_006653	ABF_006648	ABF_006664	

BIOENERGY TECHNOLOGIES OFFICE

1-4-Y_0, Design, Build: Using DIVA at PNNL

Projects: PNNL Build Team × +				
Status changed	New status	Updated by	Comment	
7 days ago	Clonal isolation	Kyle Pomraning		
07/15/19	Assembling parts	Kyle Pomraning		
06/27/19	PCRing parts	Kyle Pomraning		
06/21/19	Waiting for reagents	Kyle Pomraning	ordered primers	
06/21/19	In progress	Kyle Pomraning	Construction started.	
06/21/19	Construction requested	Kyle Pomraning	Use charge code: N83885.	
06/21/19	PI approval requested	Kyle Pomraning	Trying out DIVA for PNNL build	

J5 File - Load - Edit - Help -				
	€ E' flank		e 21 flank	
pRF_HU2_BB	ABF_006652	ABF_006648	ABF_006663	
pRF_HU2_BB	ABF_006653	ABF_006648	ABF_006664	

3HP DBTL cycles in progress

1-7-Y_0, <u>LEARN</u>: ANN non-intuitive targets

Predict the effects of genetic perturbation on a trained Artificial Neural Network

ANN trained on 3HP-responsive proteins is good (PCC=0.83) at predicting 3HP, and poor predictor of all other phenotypes.

68 3HP dose responsive proteins were knocked out and overexpressed *in silico* to predict the effect on 3HP production.

G9### (involved in cytoskeleton) deletion \rightarrow 1.1x 3HP no transformants obtained, likely essential gene

G1### (MFS transporter) overexpression \rightarrow 1.4x 3HP Graph below: no transformants with significantly improved 3HP

BIOENERGY TECHNOLOGIES OFFICE

Energy Efficiency &

Renewable Energy

U.S. DEPARTMENT OF

3HP DBTL cycles in progress

9-1-Y_0 Design, Build: 3HP host transfer

Aspergillus team is working on *A. niger* Also working with *Rhodosporidium* team on transferring 3HP pathways into *R. toruloides*

- Random integration strains
- Different titers

Energy Efficiency &

Renewable Energy

U.S. DEPARTMENT OF

. (C

1-5-Y_0/9-1-Y_0 Test: 3HP host transfer

<u>**TEST**</u>, <u>**LEARN**</u> for Aspergillus 3HP productivity comparison

Day 4 (8 strains x 4 reps = 32 samples)

- Production phase
- Prior to 3HP decrease

Targeted proteomics and intracellular metabolomics

- Enzyme concentration versus productivity in both species
- Rate limiting steps?

Extracellular metabolomics

- Product identification
- Flux modeling

Transcriptomics

Identification of regulatory and nonintuitive targets

Energy Efficiency &

Renewable Energy

U.S. DEPARTMENT OF

C

9-2-Y_0 Design, Build, Test: 3HP host transfer

9-2-Y_0 Design, Build, Test: 3HP host transfer

Aspartate aminotransferase (AAT) transformants with significantly higher 3HP

Pyruvate carboxylase (PYC)

transformants with significantly higher 3HP

Aspergillus niger transformant screening

1-8-O_M1 Design: high expression promoters

Copy Number Correlates with Productivity

- Indicates gene expression is limiting in current 3 gene construct
- It would be great to be able to drive increased expression with many strong promoters available in our tool box

1-10-O_M1 Design: transferable promoters

Identify transferable promoters for fungi

Goal:

Identify promoter:selectable marker (*nat*) combinations usable across broad phylogenetic distances

1-10-O_M1 Design: transferable promoters

Gene expression level (order)

Identify highly expressed genes = identify strong promoters, across the Kingdom Fungi

genes
ribosomal peptides

Renewable Energy

E

1-11-O_M1 Design: synthetic promoters

Renewable Energy

RG

ENERGY Energy Efficiency & Renewable Energy

FY20+ plans

- 3HP (A. pseudoterreus and A. niger)
 - Multi-omics based test/learn on *A. pseudoterreus* (1-5-Y_0) and *A. niger* (9-1-Y_0) strains with improved 3HP yield
 - Build/test/learn on 3HP catabolic genes (1-4-Y_0) targets; transfer gene target to highest yield strains
 - Test/learn on A. niger AAT/PYC strains with high productivity (9-2-Y_0) and incorporation of both gene targets into single strain
- Fungal build tools
 - DBTL for transferable and synthetic expression constructs (1-10-O_M1 & 1-11-O_M1).
 - FY20: Develop in vitro CRISPR technique that can delete multiple genes at same time and can be applied to different Aspergillus spp.

BIOENERGY TECHNOLOGIES OFFICE

ABF Team Acknowledgements

- Sierra Andrews
- Scott Baker
- Gregg Beckham
- Meagan Burnet
- Kristin Burnum-Johnson
- Jim Collett
- Sam Coradetti
- Ziyu Dai
- Henrique De Paoli
- Shuang Deng
- Mark Forrer
- Yuqian Gao
- John Gladden
- Nathan Hillson
- Beth Hofstad
- Joonhoon Kim
- Young-Mo Kim

- Phil Laible
- Peter Larsen
- William Morrell
- Nathalie Munoz-Munoz
- Carrie Nicora
- Peter Otoupal
- Ellen Panisko
- Chris Petzold
- Kyle Pomraning
- Jan-Philip Prahl
- Robby Robinson
- Diana Rodriguez
- Davinia Salvachúa
- Matt Sturtevant
- Deepti Tanjore
- Bobbie-Jo Webb-Robertson
- Jeremy Zucker

ENERGY Energy Efficiency & Renewable Energy

BIOENERGY TECHNOLOGIES OFFICE